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We give a characterization of BKW-operators on special normed spaces and
determine completely a class of BK W-operators from a function space on [0, 1]
into C(Q) for special test functions. "" 1995 Academic Press. Inc.

INTRODUCTION

In [8], the author introduced a class of operators on normed spaces
satisfying a Bohman-Korovkin-Wulbert-type theorem and investigated such
operators on special function spaces. We call such operators BKW. In this
paper we investigate a certain Korovkin closure in normed spaces and give a
characterization of BKW-operators from a normed space into a unital com­
mutative C*-algebra by means of the uniqueness sets (Theorem 1.3). Also
applying this characterization, we completely determine a class of BKW­
operators from a function space on the closed unit interval [0, I] into the
Banach space C(Q) of all continuous complex-valued functions on a compact
Hausdorffspace Q for the test functions {1, x} (Theorem 2.1 ), where a function
space on [0, I] means a subspace of C( [0, I]) which contains all constant
functions and separates the points of [0, I]. We also completely determine a
class of norm one unital BKW-operators from a function space on [0, I] into
C(Q) for the test functions {l, x, x~} (Theorem 2.2),

1. (T, E)-KoROVKIN CLOSURES IN NORMED SPACES

Let X and Y be normed spaces and B( X, Y) the normed space of all
bounded linear operators from X into Y with the usual operator norm. Let
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E be a bounded subset of Y*, the dual space of Y. For SeX and
TE B(X, Y), let K~(S; E) (resp. K~(S; E), K}(S; E)) be the closed
linear subspace of all x E X such that if {T;J is a net of B( X, Y) such
that sup A II T A II ~ II TIl (resp. lim.l II T.l II = Ii Til, II T;.II = II Til (V),)) and
limdT;Js)-T(s)IIE=O for all SES, then lim).IIT)(x)-T(x)iIE=O. Here
lIy II E = SUPg EEl g( y) I for each y E Y. We first show that all theses subspaces
coincide.

LEMMA 1.1. Under the above notations, we have K~(S; E) = Ki.(S; E) =
K}(S; E).

Proof It is clear that K~(S;E)cK}(S;E). To show K~(S;E)c

K~(S;E), let xEK~(S;E) and let {T;} be a net of B(X, Y) such
that lim;, II T).II = II Til and lim;, II T;,(s) - T(s)11 E = 0 for all s E S. As we
can assume T # 0, it follows that T.l # 0 for sufficiently large I,. Put
S;. = (1ITII/IIT.lII) T).. Then we can easily see that lim.lIIT;,(h)-S).(hlllf.=O
for any hEX. Hence lim; IIS.l(s) - T(s)IIE = 0 for all s E S, so
lim;, IIS;'(x) - T(xlil E = 0, since sup;, liS;. II = II Til and x E K~(S; E). There­
fore we obtain that lim;.IIT;,(x)- T(x)IIE=O and hence xEKi·(S; E).

We next show that K}(S; E) c K~(S; E). Note that the lemma
holds whenever sp( S) = X or Y = {O} or E = {O}, so we can assume that
sp( S) # X, Y # {O} and E # {O}, where ~p( S) is the closed linear span of S
in X. Then we can find a functional/ E X* and an element y E Y such that
11/11=1, IIYII=I,/lsp(S)=O and IIY!IE#O. Put (Y@f)(a)=/(a)y for
each a EX. Then y ® / is a norm one linear operator from X into Y. Now
let xEK}(S; E) and consider a net {T,d of B(X, Y) such that sup;, IITJ ~
liTH and lim;.IIT).(s)-T(s)llf.·=O for all SES. We need show that
lim;. II T;,(x) - T(x) II E = O. To do this let {T;,} be any subnet of {T;} Then
lim;: II T;: (s) - T(s)11 E = 0 for all s E S. Fix Je' and for any real number t E R,
put cp(t) = II T;,' + ty®/II. Then cp is continuous on Rand

cp( 0) = II T;: II ~ II Til ~ 2 II Til - II T;., II ~ II ± 21i T!IY ® f + T;, II = cp( ± 2 II Til ),

hence, by the intermediate value theorem, there exist a;: E Rand P;: E R
such that

and

Then there exist a convergent subnet {oc;,,} of {Cl:):} and a convergent
subnet {P;:'} of {P;,}. For each X', set

and

Then II U;" il = IW;:, II = II TIl and UA,,(s) = V;,"(s) = T.l"(s) for all S E S.
Since x E K}(S; E), it follows that lim;,,, II U;:,(x) - T(x)'1 f.= 0 and
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Iim,;"IIV,;,,(x)-T(x)IIE=O. Hence we have that Iim)"jllX,!".!{x)y­
p,!,,/(x)YIIE=O. Put 1X=limx'IX,!" and p=limr P'!". Then IX;?:O, P~O and
II(IX-P)/(x)YIIE=O. If/(x)=O, then the equality: lim,!" IIUr(x)-T(x)IIE=O
means that lim,!" IIT,;,,(x)-T(x)IIE=O. If/(x) ",0, then IX=P, so IX=P=O,
hence the same equality: lim)." II Ur (x) - T(x)11 E = 0 easily implies
that lim,;" IIT,;,,(x)-T(x)IIE=O. We thus obtain that for any subnet
{ T):} of {TJ, there exists a subnet {T,!,,} of {T,;'} such that
lim,!" IIT)"(x)-T(x)IIE=O. In other words, lim) IIT;.(x)-T(x)IIE=O.

Q.E.D.

DEFINITION (cf. Altomare-Boccaccio [2] and Romanelli [7]). Let
KT(S; E)=KiT(S; E)(i=O, 1,2) and we call KT(S; E) a (T, E)-Korovkin
closure of S.

Remark I. In case of that X = Y = e(Q) (Q is a compact Hausdorff
space), T = the identity operator and E = {15m : WE Q}, F. Altomare and
C. Boccaccio have already proved that K~(S; E) = K~.(S; E) = K~(S; E)
(see [2, Theorem 1.2 and Remark 1.3]).

For SeX, T E B(X, Y) and gEE, let ST.g be the set of all x E X such that
if/EX*, II/II ~ IITII and/(s)=g(T(s)) for each SES, then/(x)=g(T(x)).
Also set

In this case, we have always that jp( S) CST. t:.

Under these notations, we have the following result which contains [9,
Lemma 2.1], applying the technique used by L. C. Kurtz [5], C. Micchelli
[6J, F. Altomare and C. Boccaccio [2], F. Altomare [1], etc.

THEOREM l.l. If E is a weak*-closed subset 0/ the unit ball 0/ Y*, then
ST. t: c KT(S; E).

Proof Let X o be an arbitrary element of ST. E and suppose that
{T,;:AEA} is a net of B(X, Y) such that sup;.IIT,II~IITII and
lim,! II T,!(s) - T(s)11 E= 0 for each s E S. Then we must show that
lim;, IIT;,(xo)- T(xo)IIE=O. Assume the contrary. Then there is an GO>O
such that for any AE A, there exists IX;, E A satisfying A~ IX, and
IIT",(xo)- T(xo)II"';?:Go' Then we can find a functional g,! EE such that

(* )
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We can assume without loss of generality that the net {g),: AE A} con­
verges to a functional go E E in the weak*-topology. For each AE A, set
f~J x) =gJ T,) x»)( X E X). Then each f~, is a functional in X* such that

II f~, II ~ II Til· Also we can assume that the net {/~,: AEA} converges to a
functional fE X* with II f II ~ II TIl in the weak *-topology. For any s ES,

IfAs) - got T(s»1 ~ IgJ T,)s» - gA.( T(s»1 + Ig),( T(s» - go( T(s»1

~ II T~Js) - T{s)11 10'+ IgjT(s» - got T(s))l,

Hence, after taking the limit with respect to A, we obtain that f{s) =
go( T(s) for all s ES. Therefore f{xo) = go( T(xo» because X o EST, E CST, !In'

However this contradicts the inequality (*). Q.E.D.

Remark 2, Let E be the weak*-c1osure of Ec Y*, Then KT{S;E)=
KTI S; E). However it seems that ST. F: ¥- ST. E in general because by the
Hahn-Banach extension theorem, we have S T, jO} = sp{S) (if T ¥- 0).

Applying the technique used by H. Bauer [3], C. Micchelli [6],
F, Altomare and C. Boccaccio [2], F. Altomare [I] etc., we have the
following result which characterizes (T, E)-Korovkin closures by means of
the uniqueness sets in some special cases.

THEOREM 1.2. Let X he a normed ,Ipace, SeX, A a function algebra of
continuous functions on a locally compact Hausdorff ,Ipace Q which contains
the ,Ipace ol all continuous functions on Q having compact support,
E c QI c A *) and TE B(X, A). Then KT(S; E) CST. E' In particular, if E is
compact, then ST. /:.= KT(S; E).

Proof Let xoEKT(S;E) and WoE£. Suppose thatfis a functional in
x* such that Ilf" ~ II Til andf(s) = (Ts)(woJ for each s E S. Let {VA: AE A}
be the set of all relatively compact open neighbourhoods of W o in Q, If
;., ;.' E A, we define A~;: to mean that UA.' c U;., Hence A is a direct set
For each AEA, choose an element a), EA such that O~a;.(w)~ I for all
wEQ, a;(mo)= I and a)w)=O for all wEQ\U), and set

TJx) =f(x)a; + T(x)( 1- aJ

for each x E X. Then each T i is a bounded linear operator from X into A
such that II T; II ~ II Til· We claim that lim;. II Tils) - T(s) II E = 0 for all s E S.
Indeed, let s E S Then for any [; > 0, there exists ;., E A such that
I( Ts)(wo) - (Ts)(w)1 < [; for all WE U;,. Hence, we have

II T;s)(w) - I n I(w}/ = a;lm} If(s} - I Ts)(wll < {;



344 SIN-EI TAKAHASI

for all WE Q and all A? ),c By taking the supremum over all WE Q, we
obtain that lim;. II T;.(s) - T(s) II E= 0. Therefore lim;. II T;(xo) - T(xo)ll E= °
because xoEKT(S;E). In particular, we have that lim;.(T;.xoHwo)=
(T\'"oHwo), hence f(x o) = (Txo)(w o) since (T)xo)(wo)=f(xo) for all AEA.
In other words, X o EST. '''0' Since W o is an arbitrary point in E, it follows
that X o EST. E' Consequently, K AS; E) eST. E' If E is compact, then by
Theorem 1.1, we obtain that ST. 1-.'= KT(S; E). Q.E.D.

For SeX and Fe X*, let Us(F) be the set of all gE F such that iff E F
and f(s)=g(s) for all SES, then f=g. For p>O, let X/~=

{f E X*: II.fII ~ p}. It is clear that the following three conditions are
equivalent:

(1) STE=X.

(2) ST.g=X for all gEE.

(3) T*(E) e US(XtTII) (under the condition: Ec yt).

For SeX, let BKW(X, Y;S,!\ liE) be the set of all TEB(X, Y) such
that if {T;.} is a net of B( X, Y) satisfying lim;. II T;. II = II Til and
lim). II T),(s) - T(s)IIE = 0 ("IsE S), then limA II TA(x) - T(x)IIE=O ("IxE X).
Therefore T belongs to BK W( X, Y; s, II 111-.') if and only if KT(S; E) = X.

DEFINITION. We call an operator in BKW(X, Y; s, II liE) a BKW­
operator from X into Y for the test set S and the semi-norm II il E' We will
omit the semi-norm II II r: when II = Ii y II E for all y E Y (cf. [8].)

The following result follows immediately from Theorem 1.2 and the
above argument.

THEOREM 1.3. Let X be a normed space, SeX, A a function algebra of
continuous functions on a locally compact Hausdorjl ~pace Q which contains
the space of all continuous functions on Q having compact support, E a com­
pact subset or Q( e A *), T E B( X, A) and T * the adjoint oj' T. Then T is a
BKW-operatol" jiJI" Sand !I II I-. if and only (I' T*(E) e U.~.( xtTl:)'

2. BKW-OPERATORS FROM A FUNCTION SPACE ON [0, 1] INTO C(Q)

Recall that an operator T from a function space into another function
space is said to be unital if T(1) = t. By applying Theorem 1.3. we can com­
pletely determine all BK W-operators from a function space on [0, I] into
C(Q) for the test functions {t, x} (x( t) = t for each t E [0, I]) as follows:
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THEOREM 2.1. Let Q be a compact Hausdorff space and X a function
Jpace on [0, 1] such that Jp{ 1, x} ~ X, where sp{ 1, :r} denotes the linear
span of {I, x}. Then every BKW-operator T from X into C(Q) for the test
functions {I, x} is of form

T(f) = f(O)u +f( I)v

for every fE X, where u and v are functions in C(Q) satiJfying the following
two conditions:

(i) lu(w)1 + Idw)1 = II Til for all wEQ.

(ii) If u(w) # 0 and v(w) # 0, then lu(w) + 1'(£0)1 # II TIl.

In this case, the functions u and v are given by u = T( 1 - x) and v = T(x).
In particular, every norm one unital BKW-operator T from X into C(Q)

for {I, x} is ofform

T(f) =f(O)x + f( I )(1- X)

for every f E X, where X is a characteristic function on some c!open suhset
olQ·

Moreover, we can completely determine all norm one unital BKW­
operators T from a function space on [0, I] into C(Q) for the test
functions {I, x, .l

2
} as follows:

THEOREM 2.2. Let Q he a compact Hausdorff space and X a function
.\pace on [0,1] such that {l, x, .l

2
, .l·

l
} C X. Then every norm one unital

BKW-operator T from X into C(Q) fl)r the test functions {l, x, .l
2

} is of
form

(Tf)(w) = {f( rp(w)),
f(Ol{ l-rp(w)} +f(l) rp(w),

if w EQ\G

If WEG

.ll}r aery f E X, where rp is a continuous map from Q into [0, I] and G is an
open subset of Q such that 0 < cp( (V) < I(\I(V E G) and cp(w} = 0 or
1(V'rl)EoG). Here oG denotes the topological boundary of G in Q. In this
case, the function cp is given hy rp = T(x).

Remark 3. Let <P and Q be compact Hausdorff spaces and let X
be a function space on <P. If any bounded linear operator from X into
C( Q) has a norm preserving linear extension to the whole space C( <P),
then the restriction map: T -> T I X maps BK W( C( <P), C( Q); 5) into
BK W( X, C(Q}; 5}, where 5 denotes a set of test functions. Theorem 2.1
asserts that this restriction map is well-defined and onto in case of
<P = [0, I] and 5 = {I, x}. If we consider only the norm one unital
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operators, then Theorem 2.2 asserts that the restriction map is well-defined
and onto in case of C/J = [0, 1] and S = {1, X, Xl}.

In order to prove the above theorems, we have to prepare some lemmas.

LEMMA 2.1. Let X he a normed .Ipace and S a suhset of X such that
sp( S) £E X. Then allfunctionals in u.~.( xt) are of norm one.

Proof Let fE U.\(Xn. Assume that Ilfll < 1. By the Hahn-Banach
separation theorem, we can find a nonzero functional g E X* such that
g(s) = 0 for all s ES. Set h =I + Jeg, where). = (l - Ilf II )/llgll. Then h(s) =
f(s) for all SE Sand Ilhll ~ 1, hence h = j; a contradiction. Q.E.D.

The following result is well-known (cf. [4, Note 12.29]).

LEMMA 2.2. Let (Q, /1) he a measure Jpace and L I(Q, 11) the space of all
complex-valued integrahle functions on Q. Ill" ... ,./;, E L '(Q, /1) are such
that

It fl(w) dj/(W)' + ... + It f,(w) djl(W) '

= f If,(w)1 dll(W) + ... +J 1f,,(w)1 dp(w),
!} !}

then fdw)=e iOl Ifl(w)l, ... ,.t;.(w) =e iO
" If,(m)1 II-a.e. on Q, where (),=

Arg[J£Jh(w) dll(W)] (j= 1, ... , n).

The following result completely determines the uniqueness set
U{I.\!(Xt)·

LEMMA 2.3. Let X he a ./unction .Ipace on [0, 1] such that .Ip{ 1, x} 'i X.
Then U{l.x}(Xt)={aoo l X+ho l I X: a,hEC, lal+lhl=l and la+hli=l
(if a i= 0, b i= O)} .

Proof LetpEU:I.\}(Xn. Put a=p(l-x) and b=p(x). Then lal~l

and Ibl ~ 1. For any iX, [J EC, we have

liXa + fJbl = !p{ iX(1-X) + fix} I

~ 111111 IliX(l - x) + fJxll

~ max !iX(l - t) + fJtl·
O~/~l

In particular, for iX = a/la! and fJ = b/lbl, we have lal + Ibl ~

maxo,,;r";I{liXl(l-t)+lfJlt}=1. Now set V= aOoIX+bo,IX and so
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111'11 :(; lal + Ibl :(; I. Also 1'( 1) = a + b =1'(1) and I'(x) = b =I'(x). Then I' = )',
i.e., Il = a 150 IX + b 15 I IX because Il E Vi 1.\1 (XI"). Moreover by Lemma 2.1,
IIJlI', = I, so that 1:(; lal + Ibl and hence we have lal + Ibl = I. If also a # °
and h # 0, then la + hi # I. In fact, if la + bl = I, then we can find t > Osuch
that b= tao Also choose a function gEX\Sp{l, x} and putf=g-g(O)l +
{g(O) - g( I)} X. Then f E X and f # 0, hence there exists 0 < .I' < 1 such that

./\.1') # 0. Note that (.I' - t + st)/s < 1, so take a positive number p such that
max{ 0, (.I' - t + st)/s} < p < I. Set

rx = pa, fJ = ( 1- p )a, )I = (I - .1') b - .1'( I - p )a
1-.1' 1-.1'

and

Then we can easily see that 1'1(1) =ll(1) and Ill(X) =ll(X). Also since
(s-t+st)/s<p,

Irxl + IfJl + 1f'1 =p lal + (I-p) lal + 1(1-.1') t-s(l-p)llaj
1-.1' 1-.1'

{
I - P (1 - .1') t -... .1'(1 - P)}

=Ial p+--+ ' ..
1-.1' 1-.1'

= lal (1 + t) = lal + Ibl = 1,

hence Il/ll 11:(; I. Then III = Il because Jl E V{J.\}(Xtj. However IlI(f) =
fJf( s) # 0 and Jl(f) = af( 0) + bf( 1) = 0, so III # Il. This is a contradiction.

Conversely, let a, bE C be such that lal + Ibl = 1 and la + bl # 1 if a # 0,
b#O. We must show that aboIX+bbIIXEV{J.x}(Xn. To do this,
let It E xt be such that Jl( 1) = a + band Il(X) = b. By the Hahn-Banach
extension theorem, we can find a Radon measure j1 on [0, 1] such that
11 I X = Jl and 11j111 = 111'11· Let j1 = u IP I be the polar decomposition of j1, i.e.,

I
I I

f(t) dj1(t) = f f(t) u(t)d lill (t)
o 0

for all f E L I( [0, 1], IPI), where IP I is the total variation of j1 and u is a
measurable function on [0, I] with Iu(t) I= 1 for all t E [0, I] (see [4,
Corollary 19.38]). Then we have the following inequality:
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1= lal + Ihl = Ip( 1- x)1 + Ip(x)1

= I{ (I - t) u(t)d liil (t) I+ I( tu(t)d liil (t) I

I II~I (1-t)dIPl(t)+ tdliil(t)
o 0

~rd liil = Iliill = Ilpll ~ 1.
o

If a#-O and b#-O, then by Lemma 2.2, we have (I-t)u(t)=
eiO<(I-t)(liil-a.e.) and tu(t)=eif1t(liil-a.e.), where IX = Arg(a) and
p= Arg(h). Hence we have

Since la + hi #- I and hence IX #- P (mod.2n), it follows that
1,il!([O,IJ\{O,1})=O, i.e., supp(liij)c{O,1} by the above equation. If
a = 0, then the above inequality implies that H(I - t) d liil (t) = °and
hence supp( IPI) = {1}. If h = 0, the same inequality implies that
J6 td liil (t) = ° and hence supp( liil) = {O}. Then liil can be expressed
as l,ill = c 60 + d 6 I' for some complex numbers c and d. Therefore
ii = cu(O) 60 + du( 1)6" hence we can easily see that p = a 60 I X + h 6 1 I x.
We thus obtain that a 60 I X + h 6 1 I X EVIl. x}(Xt). Q.E.D.

The following result completely determines the "positive" functionals in
the uniqueness set VII. x. x2}(xt). The same result has been obtained by
C. Micchelli for X = C( [0, I]) (see [6, Theorem 3.1]).

LEMMA 2.4. Let X be a function space on [0, I] such that
{I, x, x 2

, x 3
} c X and X~ = {p E X*: 11.u11 =p(l)}. Then VI l.x.x'I(Xn II

X~ = {J). I X: °~ Ie ~ 1} u (I - a) 60 I X +a 6, I X: 0 < a < 1}.

Proof Let O~a~l. Then 6a lX and (l-a)6o IX+aJ I IX are in
X~. To show that J a I XE V{I.\.x,}(Xn, let VEX;" be such that v(xk

) =
Ja< xk)(k = 0, 1,2). Then 1= v(l) ~ Ilvll ~ 1. Choose a Radom measure von
[0,1] such that iilX=v and Iliill=llvll. Then Iliill=ii(l)=I, so v is
positive and also we have

Hence, the support of ii is the single point {a}. This immediately implies
that v=6a , so v=Ja I X and hence ba I XE V{I.x.x'I(Xn Next, to
show that (I-a)Jo IX+aJ I IXEV/l.x.x'I(Xn, let vEXt be such
that v(xk) = ((I-a) 150 + a Jj)(xk)(k =0, 1,2). Then 1= v(l) ~ Ilvll ~ 1.
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Choose a Radom measure v on [0, I] such that vI X = II and II vii = II II II.
Then v is positive and v( x - x 2

) = II( X - x 2
) = a - a = O. Hence, the support

of v is contained in {O, I}. This immediately implies that II =
(1 - a) 00 I X + a 0 1 I X and hence (1 - a) 00 I X + a 0] I X E V{ 1,\. x~I(Xn.

Conversely, let 11 E V{ I.x.\~l(Xt) (\ X~. By Lemma 2.1, 111111 = I, and so
Il(l) = 1. Choose a positive Radon measure fi on [0, I] such that fi I X = 11
and lifill = 1111 II· Put a = Il(x) and 13 =1l(x2). Then we have that 0 ~ et, 13 ~ I,
13 ~ oc and oc 2 ~ 13 by Schwarz's inequality. If a = 13, then fi(x - x 2) = 0 and
hence we have 11 = (I - oc) 00 I X + oc r5[ I X by the above argument. If also
et 2=fJ, then fi((x-a)2)=fJ-2oc 2+oc 2=O and so 1l=r5" I X by the above
argument. We finally show that the case 0 < oc2 < 13 < et < I does not occur.
Assume the contrary. For each 0 < A< I, set

11). = a(}.)00 I X+b(A)J,l1 X+c(A)r5[ I X,

where a( A) = J. - 1P - (1 + A) oc + fJ}, b( A) = 0.(1 - A)) - [( oc - fJ) and co.) =
(l - A) -1(13 - AOC). Then we have that p;( 1) = I = III 1), /l;,(x) = oc = p(x) and
1l,,(x2) = 13 =1l(x2). Note that a(et) > 0, b(et) > 0 and c(et) > O. Then III'" II = I
and hence 1'" must equal/I. Now choose a number e such that 0 < e <
min{ 1- oc, (13 - oc2 )/oc}. Then a(a + e) > 0, b(a + /0) > 0 and c(et + e) > O.
Hence Illluc II = I, so Il,,+c must equal/I. On the other hand, we can find
a polynomial p E X of the third degree such that p(O) = p( I) = p(:x) = °and
p(oc+e),eO. Then we have p,,+c(p)=b(et+e)p(:x+e),eO and p,,(p)=
bloc) p(:x) = O. This is a contradiction. Q.E.D.

Remark 4. In Lemma 2.4 and Theorem 2.2, we can replace the condi­
tion: {I, X, x 2

, x 3
} c X by the condition: X contains a Chebyshev system

{I, X, x 2
, g} of order 3.

The following result is fundamental and its proof is straightforward, and
so is left to the reader.

LEMMA 2.5. Let Q be a topological space, G an open subset of Q. Let rp
and t/J be continuous maps from Q to another topological space such that
rp( (0) = t/J( co) for each co E 8C and let f be defined on Q by

f(w) = {t/J(w)
rp(w),

if wEQ\G

if WE G.

Then f is continuous on Q. Here oG denotes the topological boundary of G.

Proof of Theorem 2.1. Let T be a bounded linear operator from X into
C(Q). Without loss of generality, we can assume that T is of norm one. By
Theorem 1.3, T is a BKW-operator from X into C(Q) for the test functions
{I, x} if and only if T*(r5,J E V p .x}(Xn for all WE Q, where J", denotes
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the evaluation at WEQ. Also by Lemma 2.3, T*(t5w )EU{I.xl(Xn
for all WE Q if and only if for each WE Q, there exists a pair of complex
numbers (u(w), v(w)) such that T*(t5,J = u(w) 15 0 I X + u(w) 15 1 I X,
lu(w)1 + Iv(w)1 = I and lu(w) + v(w)1 #- I when u(w) #-0 and dw) #- O. Note
that T*(o,,J=u(W) 150 I X+v(w)t5) I X means that (Tf)(w)=f(O)u(w)+
f( I )v(w) for all f EX. We thus obtain that T(f) = f( O)u +f( I )v for all fE X.
Moreover, this equation easily implies that u = T( I - x) and v = T( x) and
so u and v are in C(Q).

In particular, if T is unital, we have

I = (n )(w) = u( w) + v( w)

for all wEQ. Therefore Q=Q"uQ" and Q"nQ,,=0, where Q,,=
{WE<fJ:U(W)#-O} and Q.,={WE<fJ:V(W)#-O}. Hence u and v equal the
characteristic functions on Q" and Q", respectively. Of course, u + v = 1, so
that by putting X = u, we obtain that the desired equation:

T(f) = f(O)x + f(l)(1 - X)

for every fE X. Q.E.D.

Proof of Theorem 2.2. Let T be a norm one unital BKW-operator
from X into C(Q) for the test functions {1,x,x 2}. Let wEQ.
Then by Theorem1.3, T*(t5",)EU1I.x,x2r(Xn and so IIT*(t5,JII=1 by
Lemma2.1. Note also that (T*t5",)(l)=I(w)=1. Therefore T*(t5",)E
U{l.u·2}(XnnX~ for all WEQ. Hence by Lemma 2.4, we have
Q=FTuG T , where FT is the set of all wEQ such that T*(t5",)E
{t5).IX:O:(.Ie:(I} and GT is the set of all wEQ such that T*(t5,,,JE
{(I - a) 15 0 I X + a 15) I X: 0 < a < I}. Since the map: W -> T*(t5",) is weak*­
continuous and the set {t5). I X: O:(.Ie :( I} is weak *-closed, FT must be
closed. Of course, FT n GT= 0, hence GT is open. For each (V EFT' we can
find a unique point t(w) in [0, I] such that T*(t5w ) = 15 I(w) I X. Also
for each WE GT' we can find a unique point .1'( w) in the open unit
interval ]0, I[ such that T*(t5w ) =(I-s(w»t5o I X+s(w)t5 1 I x. Note that
(Tx)«(v)=t(w) for each WEFT and (Tx)(w)=s(w) for each wEG T. Then
for each f E X, we have

(Tf)(w) = {f«TX)(W»,
j(O){I - (Tx)(w)} + f(l)( Tx)(w),

if WEFT

if wEG T.

Let WE aG T . Then there exists a net {w..!} in GT which converges to w.
Set t=(Tx)(w) and t}.=(Tx)(w..!). Then T*(t5w )=t5{1 X, T*(t5",,)=
(I - l,,) 15 0 I X + t..! 15) I X and the net {t}.} converges to t. Since
w* -lim..! T*(t5w J = T*(t5w ), it follows that t5{ I X = (I - t) 150 I X + t 15, I X,
hence, t5{(x 2)=(1_t)t5oCy2)+tt5,(x2), so t=O or I.
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if WE Q\G

if WE G.

Conversely, let rp be a continuous map from Q into [0, 1] and G is
an open subset of Q such that O<rp(w)<I('1wEG) and rp(w)=O or
1('1w E 8G). For each f E X, put

(T f)(w) = {f( rp(w)),
<p f(O){I-rp(w)}+f(1)rp(w),

Since rp(w) = 0 or 1('1w E8G), it follows that f(O){ 1 - rp(w)} +f(1 ) rp(w) =
f(rp(w)) for all wEOG. Then for each fEX, T<p(f) is a complex-valued
continuous function on Q by Lemma 2.5. Moreover we can easily see that
T<p is a norm one unital linear operator from X into C(Q). Also by the
definition of T<p' we have that

T;(Jw)E {J;./ X: O~A~ 1}U{(I-a)Jo / X+aJ I I X: O<a< I}

for all WE Q. Then T<p is BKW for the test functions {I, X, x 2
} from

Theorem 1.3 and Lemma 2.4. Q.E.D.
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