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We give a characterization of BKW-operators on special normed spaces and
determine completely a class of BK W-operators from a function space on [0, 1]
into C(£2) for special test functions. 1« 1995 Academic Press, Inc.

INTRODUCTION

In [8], the author introduced a class of operators on normed spaces
satisfying a Bohman-Korovkin-Wulbert-type theorem and investigated such
operators on special function spaces. We call such operators BKW. In this
paper we investigate a certain Korovkin closure in normed spaces and give a
characterization of BK W-operators from a normed space into a unital com-
mutative C*-algebra by means of the uniqueness sets (Theorem 1.3). Also
applying this characterization, we completely determine a class of BKW-
operators from a function space on the closed unit interval [0, 1] into the
Banach space C(£2) of all continuous complex-valued functions on a compact
Hausdorffspace € for the test functions { 1, x} (Theorem 2.1), where a function
space on [0, 1] means a subspace of C([0, 1]) which contains all constant
functions and separates the points of [0, 1]. We also completely determine a
class of norm one unital BK W-operators from a function space on [0, 1] into
C(£2) for the test functions {1. x, x’} (Theorem 2.2).

1. (T, E)-KOROVKIN CLOSURES IN NORMED SPACES

Let X and Y be normed spaces and B(X, Y) the normed space of all
bounded linear operators from X into Y with the usual operator norm. Let
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E be a bounded subset of Y* the dual space of Y. For S= X and
TeB(X,Y), let KNS, E) (resp. K\(S;E), K3(S;E)) be the closed
linear subspace of all xe X such that if {7,} is a net of B(X,Y) such
that  sup; |7, | <17\ (resp. dim, [T, =T\ 1T, =|T] (¥2)) and
lim; [|T,(s) = T(s)|| g =0 for all seS, then lim, || T,(x) — T{x)}j z =0. Here
hyle=sup,.rlg(y)| for each y e Y. We first show that all theses subspaces
coincide.

LemMa 1.1.  Under the above notations, we have K9(S; E)=K\(S; E)=
K3(S; E).

Proof. Tt is clear that KL(S;E)Y< K3(S;E). To show K(S:E)c
KW (S, E), let xeK%(S;E) and let {T,} be a net of B(X,Y) such
that lim, |7, | =|T) and lim, |T,{s} —T(s)|p=0 for all s€S. As we
can assume T #0, it follows that T, #0 for sufficiently large 4. Put
S, =T/ T,I)T,. Then we can easily see that lim, |[T,(h)— S (1)|[.=0
for any h € X. Hence lim; |S;(s) — T(s)llp = 0 for all se S, so
lim, |S;(x)— T(x)|| =0, since sup, |S,| =[7T| and xe K%(S; E). There-
fore we obtain that lim; | 7,(x)— 7{x) =0 and hence xe K}(S; E).

We next show that K3(S;E)c K%(S;E). Note that the lemma
holds whenever $p(S)=X or Y={0} or E={0}, so we can assume that
5p(S)# X, Y# {0} and E# {0}, where 5p(S) is the closed linear span of S
in X. Then we can find a functional f € X* and an element y € Y such that
(=1 lyi=1 f15p(S)=0 and |y|, #0. Put (y® f)a)=f(a)y for
each ¢e X. Then y® fis a2 norm one linear operator from X into Y. Now
let xe K3(S; E) and consider a net { T} of B(X, Y) such that sup, || T,| <
1TH and lim; |T,(s)—T{s}|z=0 for all seS. We need show that
lim, Ty(x) — T(x)| g =0. To do this let {7} be any subnet of {7,}. Then
lim; {7, (s)— T(s){ g =0 for all se S. Fix A’ and for any real number re R,
put ()= T, +ty® f|l. Then ¢ is continuous on R and

POy =T, I <|TI<2|T) 1T, I <220 T @/ +Tx | =@(£2|T]).

hence, by the intermediate value theorem, there exist a; € R and £, eR
such that

=2 )T <B, <0<, <2|T) and  @(f,)=9lx,)=]T].

Then there exist a convergent subnet {a«,.} of {x;} and a convergent
subnet {8,.} of {f;.}. For each 1", set

Up=T; 4+ y®f and Vo=Tp+py®f

Then |U,.|l = ||[V,] = {TI and U,.(s) = V,.{s) = T,.(s) for all s € S.
Since xeK3(S;E), it follows that lim, U, (x)—T(x)|,=0 and
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lim;. | V;.(x)— T(x)|;=0. Hence we have that lim,.[o;. f(x)y—
B f(x)y)g=0. Put a=lim;.a,. and f=1lim,. f,.. Then « =0, # <0 and
W —B) f(x) ¥l =0. If f{x)=0, then the equality: lim . |U,.(x)— T(x)|| ;=0
means that im . [T (x) — T{x)|| ,=0. If f{x)#0, thena=f, soa==0,
hence the same equality: lim,. U, (x)—T(x)| =0 -easily implies
that hm;. | 7(x) — T({x)}{ g=0. We thus obtain that for any subnet
{T,} of {T,}, there exists a subnet {7,} of {7,} such that
hm (1 7,-(x) — T{x) .=0. In other words, hm; |T(x)— T(x)},=0.

Q.ED.

DeriniTION (cf. Altomare-Boccaccio [2] and Romanelli [7]). Let
KA (S; EY=K'(S; EXi=0,1,2) and we call K,(S; E) a (T, E)-Korovkin
closure of S.

Remark 1. In case of that X=Y=C(2) (2 is a compact Hausdorff
space), T=the identity operator and E={J,,: weQ}, F. Altomare and
C. Boccaccio have already proved that K9.(S; E)=KW(S; E)=K(S; E)
{see [2, Theorem 1.2 and Remark 1.3]).

For Sc X, TeB(X, Y) and g€ E, let S, be the set of all xe X such that
if feX* | fI <|T| and f(s)=g(T(s)) for each se S, then f{x)=g(T(x)).
Also set

In this case, we have always that 5p(S) = S .

Under these notations, we have the following result which contains [ 9,
Lemma 2.1], applying the technique used by L. C. Kurtz [ 5], C. Micchelli
{6]. F. Altomare and C. Boccaccio [2], F. Altomare [1], etc.

THEOREM 1.1. If E is a weak*-closed subset of the unit ball of Y*, then
S7.6 <Kr(S; E).

Proof. Let x, be an arbitrary element of S, , and suppose that
{T,:AeA} is a net of B(X,Y) such that sup, (7,]<||T)| and
lim, ||[T,(s) ~T(s)llg=0 for each seS. Then we must show that
Iim; | T,(xo) ~ T(xy)ll ,=0. Assume the contrary. Then there is an g,>0
such that for any Ae A, there exists a; A satisfying A<a;, and
I T, (xo) — T(xp)l| . = &,. Then we can find a functional g, € E such that

lgi(TM(xm—gmxomz% (*)
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We can assume without loss of generality that the net {g,: Aie A} con-
verges to a functional g, € £ in the weak*-topology. For each i€ A, set
Jix)=g (T (x))xeX). Then each f, is a functional in X* such that
I fi 1 <|TJ. Also we can assume that the net {f,: Ae A} converges to a
functional fe X* with | f|| <||T} in the weak*-topology. For any se S,

) =g TN < gl T, (5) — g ATUsH] + 124 Ts)) — gol T(s)))
ST, 08) = T(s)| o+ | g A T(5)) — go( Ts)).

Hence, after taking the limit with respect to A, we obtain that f(s)=
8ol T(s)) for all s € S. Therefore f(x,) =gl T(X,)) because xo€ Sy p = S7. ..
However this contradicts the inequality (*). Q.ED.

Remark 2. Let E be the weak*-closure of Ec Y* Then K,(S; E)=
K (S; E). However it seems that S,  #S, , in general because by the
Hahn-Banach extension theorem. we have S'T_ tor = 3p(S) (if T+#0).

Applying the technique used by H. Bauer [3], C. Micchelli [6],
F. Altomare and C. Boccaccio [2], F. Altomare [ 1] etc, we have the
following result which characterizes (7, E)-Korovkin closures by means of
the uniqueness sets in some special cases.

THEOREM 1.2, Let X be a normed space, S < X, A a function algebra of
continuous functions on a locally compact Hausdorff space Q which contains
the space of all continuous functions on €2 having compact support,
EcQ(c A*) and Te B(X, A). Then K(S; EY< Sy . In particular, if E is
compact, then S; =K (S E).

Proof. Let x,€ K(S; E) and @, € E. Suppose that f is a functional in
X* such that || /i < ||T} and f(s) =(Ts)(w,) for each se S. Let {U,: Lle A}
be the set of all relatively compact open neighbourhoods of w, in Q. If
i, 2 e A, we define A</ to mean that U, < U,. Hence A is a direct set.
For each A€ A, choose an element «; € A such that 0 <a;(w)< 1 for all
weQ, a,(wy)=1 and a;{w)=0 for all we Q\U,, and set

T.(x)=f(x)a,+ T(xH1—a,)
for each x e X. Then each T, is a bounded linear operator from X into A
such that |7, | < |TJ. We claim that lim; | T,(s) — T(s)| =0 for all s€ S.
Indeed, let seS. Then for any &3>0, there exists /7 ,e4 such that

[(Ts)wy) = (Ts)w)| <e for all we U, . Hence, we have

T sh@)—(Ts)w)| =a{@) | f(5) —(TsHw)| <e¢
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for all we @ and all 1> 4,. By taking the supremum over all we 2, we
obtain that lim, | T,(s) — T(s)| .= 0. Therefore lim, | T,(xy)} — T(xo)l| =0
because x,e K(S; E). In particular, we have that lim (7T, x,)w,) =
(Txo)wy), hence f(xy)=(TxyNw,) since (T;xq)(wy) =f(xy) for all leA.
In other words, x, €S, we- SINCE (g 1S an arbitrary point in E, it follows
that x, GS-,«_ # Consequently, K,(S; E)c S8, .. If E is compact, then by
Theorem 1.1, we obtain that $, ., = K(S; E). Q.ED.

For Sc X and Fc X*, let Uy(F) be the set of all ge Fsuch that if fe F
and f(s)=g(s) for all seS, then f=g For p>0, let X}¥=
{feX* | fII<p}. It is clear that the following three conditions are
equivalent:

() S;.=X
(2) S ,=Xforall gek.
(3) T*E)c Ug(X¥r) (under the condition: Ec Y ).

For S< X, let BKW(X, Y;S, || |,) be the set of all Te B(X, Y) such
that if {7,} is a net of B(X,Y) satisfying lim, |7,/ =|T| and
lim, | T(s)— T(s) , =0 (VseS), then lim, |T,{x)— T(x)[ =0 (¥xe X).
Therefore 7 belongs to BKW(X, Y. S, | ||,) if and only if K(S; E)=X.

DeriNiTiON.  We call an operator in BKW(X, Y; S, | ||z) a BKW-
operator from X into Y for the test set S and the semi-norm || | .. We will
omit the semi-norm | |, when |yl =[]z for all ye Y (cf [8].)

The following result follows immediately from Theorem 1.2 and the
above argument.

THEOREM 1.3. Let X be a normed space, S< X, A a function algebra of
continuous functions on a locally compact Hausdorff space £ which contains
the space of all continuous functions on Q having compact support, E a com-
pact subset of Q< A*), Te B(X, A) and T* the adjoint of T. Then T is a
BKW-operator for S and || ||, if and only if T*(E)c Ug(X¥F).

2. BKW-OPERATORS FROM A FUNCTION SPACE ON [0, 1] INTO C(£2)

Recall that an operator T from a function space into another function
space is said to be unital if 7(1) = 1. By applying Theorem 1.3. we can com-
pletely determine ail BK W-operators from a function space on [0, 1] into
C(Q) for the test functions {1, x} (x(¢)=1 for each re [0, 1]) as follows:
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THEOREM 2.1. Let Q be a compact Hausdorff space and X a function
space on [0, 1] such that sp{1, x} ¢ X, where sp{1, x} denotes the linear
span of {1, x}. Then every BKW-operator T from X into C(2) for the test
Sunctions {1, x} is of form

T(fY=f0)u+ fil)v

for every fe X, where u and v are functions in C(£2) satisfying the following
two conditions:

(1) |u(@)| + [e(w)] = | T for all we 2.
(11) If ulw)+#£0 and v(w) #0, then ju(w) + v(w)| # ([ T.

In this case, the functions u and v are given by u= T(1 —Xx) and v =T(x).
In particular, every norm one unital BKW-operator T from X into C(Q)

Jor {1, x} is of form
TN =f0)x + A=)

for every fe X, where x is a characteristic function on some clopen subset
of .

Moreover, we can completely determine all norm one unital BKW-
operators T from a function space on [0,1] into C(Q2) for the test
functions {1, x, x*} as follows:

THEOREM 2.2. Let Q he a compact Hausdorff space and X a function
space on [0,1] such that {1, x,x*, x*} = X. Then every norm one unital
BKW-operator T from X into C(R) for the test functions {1, x, X} s of
Sform

So(w)), if weQ\G

(U)((U):{f(o){l_(p((u)} +f‘(l)(p((0)’ If weG

Jor every [ € X, where ¢ is a continuous map from Q into [0, 1] and G is an
open subset of Q such that 0<@lw)<l(VoeG) and @lw)=0 or
1(Ve» € 0G). Here 8G denotes the topological boundary of G in 2. In this
case, the function @ is given by @ = T{(x).

Remark 3. Let @ and @ be compact Hausdorfl spaces and let X
be a function space on @. If any bounded linear operator from X into
C(£2) has a norm preserving linear extension to the whole space C(@),
then the restriction map: 7T— T | X maps BKW({((@), C(2);5) into
BKW(X, C(£2}); S), where S denotes a set of test functions. Theorem 2.1
asserts that this restriction map is well-defined and onto in case of
@=[0,1] and S={1,x}. If we consider only the norm one unital
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operators, then Theorem 2.2 asserts that the restriction map is well-defined
and onto in case of ®=[0, 1] and S= {1, x, x*}.

In order to prove the above theorems, we have to prepare some lemmas.

LEMMA 2.1. Let X be a normed space and S a subset of X such that
sp(S) g X. Then all functionals in U X[) are of norm one.

Proof. Let fe Uy X¥) Assume that || f| <1. By the Hahn-Banach
separation theorem, we can find a nonzero functional ge X* such that
gls)=0for all s€8S. Set h=f+ Ag, where A=(1— | /1)/llgll. Then h(s) =
Sis) for all se § and |4 < 1, hence A = f; a contradiction. Q.ED.

The following result is well-known (cf. [ 4, Note 12.29]).
LEMMA 2.2, Let (2, u) be a measure space and LY, p) the space of all

complex-valued integrable functions on Q. If f|, ... f, € L', u) are such
that

+ -+ j Sul) dulw)
§2

f Jilw) difew)
82

= [ M@ dute)+ - + [ | £l dutoo),
(2] £2

then fi(w)=e"" |fw). .. flw)=e" ][ w)] p—ae. on Q, where 0=
Argl{, filw)du(w)] (j=1, .. n).

The following result completely determines the uniqueness set
U{l,,\'}(Xl*)-

LemMMA 23. Let X be a function space on [0, 1] such that sp{1, x} & X.
Then Uyy ((X¥)={ady| X+bd,| X a,beC, lal+|b|=1and |a+b|#1
(iff a0, b#0}}.

Proof. Let ue U, (X}). Put a=pu{l—x) and b= pu(x). Then |a} <1
and |b| < 1. For any «, i e C, we have

lact + fb] = |pef (1 —x) + fx}
<l fod 1 —x) + Bx|l

< max Ja(l —¢) + fir].
1

O0<r<

In particular, for « = a@/|la] and B = b/|b], we have |a| + |b| <
maxy o, < {laf (1 =)+ Bt} =1. Now set v=ad,|X+hd,| X and so
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vl < la) + bl < 1. Also v(1)=a+b=p(1) and v(x)=b=p(x). Then =,
ie, pt=ady|X+bd,| X because e Uy (XT). Moreover by Lemma 2.1,
el =1, so that 1 < la| + || and hence we have ja| + |b| =1. If also ¢ #0
and b #0, then la+ b| # 1. In fact, if ¢ + b| = 1, then we can find ¢ > 0 such
that b = ta. Also choose a function ge X\sp{1, x} and put f =g —g(0)1 +
{g(0)—g(1)} x. Then fe X and f #0, hence there exists 0 <s <1 such that
f(s}#0. Note that (s — ¢+ st)/s < 1, so take a positive number p such that
max}0, (s—1+st)/s} <p<l. Set

a=pa p=0=p U =9)b=sd=p)a

l—s
and
Hi=adg| X+Bo,| X+7yd,| X

Then we can easily see that g, (1)=gu(1) and g,(x)=p(x). Also since
(s—t+st)s<p,

L=p)la)  W1=s)t—s(1—p)llal

ol + 181+ 7= p lal + =2 =
— R

] {p+1—p+(l—s)tis(l—p)}

1—s 1—s

=lal (14+1)=|a| +1b] =1,

hence |u,||<1. Then u,=pu because pe Uy, (XF). However u,(f)=
Bf(s)#0 and u(f)=af(0) + bf(1)=0, so yx, #u. This is a contradiction.
Conversely, let a, be C be such that |a| +|b|=1 and |a+b|#1 if a #0,
b#0. We must show that ady|X+bh3d,| Xe Uy (X¥). To do this,
let e X¥ be such that u{1)=a+b and u(x)=>b. By the Hahn-Banach
extension theorem, we can find a Radon measure 4 on [0, 1] such that
Al X=y and |jg| = |ul. Let f=u || be the polar decomposition of 4, i.e.,

1 i
[ dao = poyunrd al )
0 0

for all fe L¥[0,1],|7]), where |Z| is the total variation of & and u is a
measurable function on [0, 1] with |u{7)] =1 for all te[0, 1] (see [4,
Corollary 19.387). Then we have the following inequality:
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L= lal + 6] = |u(1 = x)| + |u(x)]

1
=UO (=0 u(t)d |l (1)

1

+U n1)d || (z)'
4]
1 1

<] U=ndla o+ ] il

<f il =1l = Il <.
4]

If a#0 and b6+#0, then by Lemma 22, we have (1—t)u(t)=
e™(1 —¢)(|fi| —ae) and tu(t)=e"1(|ji|—ae.), where o=Arg(a) and
f = Arg(b). Hence we have

1=(1—1)e™+te®| (|| —a.e.).

Since |a+bl # 1 and hence a # f (mod.2xn), it follows that
Ao, 11\{0, 1})=0, ie, supp(lal)={0,1} by the above equation. If
a=0, then the above inequality implies that j(')(l —1)dif| (t1)=0 and
hence supp(|al)={1}. If b=0, the same inequality implies that
LIJ td |fi| (t)=0 and hence supp(|i|)={0}. Then || can be expressed
as |g|=cd,+dd,, for some complex numbers ¢ and d Therefore
fi=cu(0)d,+du(1)d,, hence we can easily see that u=ad, | X+bJ,| X.
We thus obtain that a 3, | X +bd,] Xe Uy (XT¥). QED.

The following result completely determines the “positive” functionals in
the uniqueness set U,, . »(X¥). The same result has been obtained by
C. Micchelli for X = C([0, 1]) (see [ 6, Theorem 3.1]).

LEmMMA 24. Let X be a function space on [0,1] such that
{l,x, x>, X’ € X and X* ={pueX* |u|=p1)}. Then Uy, , 2((X¥)N
X*={0,| X:0<i<l}u(l—a)dy| X+ad, | X:0<a<l]}.

Proof. Let 0<a<1. Then J,|X and (l—-a)dy| X+ad,| X are in
X* . To show that §,| Xe U, , »(X}¥), let ve X¥ be such that v(x*)=
S (x*k=0,1,2). Then | =v(1)<|lv| < 1. Choose a Radom measure ¥ on
[0,1] such that 7| X=v and [#|=|v|. Then ||¥]|=1%#1)=1, so ¥ is
posttive and also we have

P((x —a)?y =v(x?) =2av(x)+a*v(l)=a*—2a’ +a> =0.

Hence, the support of ¥ is the single point {a}. This immediately implies
that 9=6,, so v=4,|X and hence 4, Xe U, , o (X{) Next, to
show that (1—a)d,|X+ad, | XeU , o(XF¥), let veX¥ be such
that w(x*)=((1 —a) Sy +ad )x*)k=0,1,2). Then 1=w1)<|v|<]I.
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Choose a Radom measure ¥ on [0, 1] such that ¥| X=v and ||| = |jv|.
Then 7 is positive and #(x — x?) = v(x — x*) =a —a =0. Hence, the support
of ¥ is contained in {0,1}. This immediately implies that v=
(I1—a)dy| X+ad,| X and hence (1 —a)d,| X+ad,| XeUy, , 2 (XT).

Conversely, let e Uy, 2(X)n X% . By Lemma 2.1, (] =1, and so
u(1)=1. Choose a positive Radon measure 7 on [0, 1] such that g | X=pu
and ||)| = |ull. Put @ =u(x) and f=u(x?). Then we have that 0 <a, S <1,
f<a and «®> < f by Schwarz’s inequality. If « = §, then j(x — x?)=0 and
hence we have y=(1 —a)d, | X+« d, ] X by the above argument. If also
a’=pf, then f({x—a)’)=p—2a>+a’=0 and so g =4, | X by the above
argument. We finally show that the case 0 <a® < <a <1 does not occur.
Assume the contrary. For each 0 <4 <1, set

fo=a(2) 0y | X+b(A)5, | X+c(A)d, | X

where a(A)=A"Y{A—(1+ ) a+ B}, b(A)=(il—-21)) "(a—p) and c(})=
{1 —A)~Y(f— Ax). Then we have that z;(1) =1=g(1), g,(x) = o= pu(x) and
w,(x%) =B =pu(x?). Note that a(x) >0, b(a) >0 and ¢(x) >0. Then |z || =1
and hence x, must equal . Now choose a number ¢ such that 0 <e <
min{l —a, (f—a?)/a}. Then a(a+¢)>0, bla+¢)>0 and c(x+¢)>0.
Hence |y, , .|| =1, so u,,, must equal 4. On the other hand, we can find
a polynomial p € X of the third degree such that p(0) =p(1) =p(x} =0 and
pla+¢e)#0. Then we have u,, Ap)=b(x+¢&)pla+e)#0 and u,(p)=
b(a) p(a) = 0. This is a contradiction. Q.E.D.

Remark 4. In Lemma 2.4 and Theorem 2.2, we can replace the condi-
tion: {1, x, x% x*} = X by the condition: X contains a Chebyshev system
{1, x,x% g} of order 3.

The following result i1s fundamental and its proof is straightforward, and
so is left to the reader.

LEMMA 2.5. Let Q2 be a topological space, G an open subset of Q. Let ¢
and  be continuous maps from £ to another topological space such that
@) =y(w) for each w e dG and let [ be defined on Q by

Ylw) if we\G

f(w):{(p(w), if wed.

Then [ is continuous on Q. Here 8G denotes the topological boundary of G.

Proof of Theorem 2.1. Let T be a bounded linear operator from X into
((£2). Without loss of generality, we can assume that 7 is of norm one. By
Theorem 1.3, T is a BK W-operator from X into C(£) for the test functions
{1, x} if and only if T*(d,)e U, ,(X*) for all weQ, where d,, denotes
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the evaluation at we®. Also by Lemma223, T*0J,)eU, . (XF)
for all we 2 if and only if for each w e, there exists a pair of complex
numbers (u(w), v(w)) such that T*d,)=u(w)dy| X+ v(w)d,| X,
lu(w)| + |v(w)] =1 and |u(w) + v{w)] # 1 when u{w) %0 and v{w) # 0. Note
that 7*(3,,) =u(w) dy]| X +v(w) d, | X means that (T Nw)=f(0)u(w)+
S{Du(w) for all fe X. We thus obtain that T( /) =f(0)u + f(1)v for all fe X.
Moreover, this equation easily implies that « = 7T(1 — x) and v = T(x) and
so u and v are in C(£).
In particular, if 7 is unital, we have

| =(T1){w)=ulw)+ v(w)

for all weR. Therefore =0, v, and Q, Q2 , =, where Q, =
{we®: u(w)#0} and Q,={weP: v(w)+#0}. Hence u and v equal the
characteristic functions on 2, and €2, respectively. Of course, u + v =1, so
that by putting y = u, we obtain that the desired equation:

T(f)=f10)x + f(1) (1 —x)

for every fe X. Q.E.D.

Proof of Theorem 2.2. let T be a norm one unital BKW-operator
from X into C(Q) for the test functions {1,x,x°}. Let weQ.
Then by Theorem 1.3, T*(3,)e U, . o (X}¥) and so [T*3,)l=1 by
Lemma 2.1. Note also that (T*6,)(1)=1{w)=1. Therefore T*(J,)e
Ui o (XF)0 X% for all we. Hence by Lemma24, we have
Q=F,uG, where F, is the set of all weQ such that T*J,)e
{0, X:0<A<1} and Gy is the set of all we® such that T, ,)e
{(1—a)dy| X+ad, | X:0<a<1}. Since the map: w— T*(J,,) is weak*-
continuous and the set {J,| X:0< A< 1} is weak*-closed, F must be
closed. Of course, ¥ nG,= {J, hence G+ is open. For each we F, we can
find a unique point (@) in [0, 1] such that T*,) =0, | X. Also
for each we G, we can find a unique point s(w) in the open unit
interval }0, 1[ such that 7*(J,,) = (1 — s(®)) o, | X+ s(w) J, | X. Note that
(Tx)(@w)=tw) for each we F; and (Tx)(w) =s{w) for each we G;,. Then
for each fe X, we have

_ SUTx){w)), if weFy
(Iw)= {f(()){l —(Tx){w)} + f(D(Tx)(ew), if weGy.

Let @€ dG,. Then there exists a net {w,} in G which converges to .
Set t=(Tx)(w) and t,=(Tx)(w;). Then T*(8,)=06,|X, T*({,,)=
(1—¢)8p| X+1¢;6,1 X and the net {z,} converges to r Since
w* —lim; T*(d,,)=T*(,), it follows that 6, | X=(1—1)ds | X+10,| X,
hence, 6,(x?)=(1—1) So(x*)+15,(x%), so t=0 or 1.
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Conversely, let ¢ be a continuous map from 2 into [0,1] and G is
an open subset of € such that 0 <e(w)<l(VweG) and ¢(w)=0 or
1(Vw € 8G). For each fe X, put

Hp(w)), if weQ\G
SOl —g(w)} + f(1) p(w), if wed.

Since ¢(w) =0 or 1(Yw € G), it follows that f(0){1 — p(w)} + (1) p(w) =
Jlp(w)) for all wedG. Then for each fe X, T,(f) is a complex-valued
continuous function on £ by Lemma 2.5. Moreover we can easily see that
T, is a norm one unital linear operator from X into C(£2). Also by the
definition of T, we have that

(Tq,f)(w):{

TXd,)e{o; | X 0<i<1}|J{l—a)d, | X+ad, | X:0<a<]1}

for all we2. Then T, is BKW for the test functions {I,x, x*} from
Theorem 1.3 and Lemma 2.4. Q.ED.
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