(T, E)-Korovkin Closures in Normed Spaces and BKW-Operators

SIN-EI TAKAHASI

Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992, Japan

Communicated by Dany Leviatan

Received August 10, 1993; accepted in revised form September 7, 1994

DEDICATED TO PROFESSOR TAKAYUKI FURUTA ON HIS 60TH BIRTHDAY

We give a characterization of BKW-operators on special normed spaces and determine completely a class of BKW-operators from a function space on [0, 1] into $C(\Omega)$ for special test functions.

Introduction

In [8], the author introduced a class of operators on normed spaces satisfying a Bohman–Korovkin–Wulbert-type theorem and investigated such operators on special function spaces. We call such operators BKW. In this paper we investigate a certain Korovkin closure in normed spaces and give a characterization of BKW-operators from a normed space into a unital commutative C^* -algebra by means of the uniqueness sets (Theorem 1.3). Also applying this characterization, we completely determine a class of BKW-operators from a function space on the closed unit interval [0,1] into the Banach space $C(\Omega)$ of all continuous complex-valued functions on a compact Hausdorff space Ω for the test functions $\{1, x\}$ (Theorem 2.1), where a function space on [0, 1] means a subspace of C([0, 1]) which contains all constant functions and separates the points of [0, 1]. We also completely determine a class of norm one unital BKW-operators from a function space on [0, 1] into $C(\Omega)$ for the test functions $\{1, x, x^2\}$ (Theorem 2.2).

1. (T, E)-Korovkin Closures in Normed Spaces

Let X and Y be normed spaces and B(X, Y) the normed space of all bounded linear operators from X into Y with the usual operator norm. Let

340

0021-9045/95 \$12.00

Copyright (*) 1995 by Academic Press, Inc. All rights of reproduction in any form reserved. E be a bounded subset of Y^* , the dual space of Y. For $S \subset X$ and $T \in B(X, Y)$, let $K_T^0(S; E)$ (resp. $K_T^1(S; E)$, $K_T^2(S; E)$) be the closed linear subspace of all $x \in X$ such that if $\{T_\lambda\}$ is a net of B(X, Y) such that $\sup_{\lambda} \|T_\lambda\| \le \|T\|$ (resp. $\lim_{\lambda} \|T_\lambda\| = \|T\|$, $\|T_\lambda\| = \|T\|$ ($\forall \lambda$)) and $\lim_{\lambda} \|T_\lambda(s) - T(s)\|_E = 0$ for all $s \in S$, then $\lim_{\lambda} \|T_\lambda(x) - T(x)\|_E = 0$. Here $\|y\|_E = \sup_{g \in E} |g(y)|$ for each $g \in Y$. We first show that all theses subspaces coincide.

LEMMA 1.1. Under the above notations, we have $K_T^0(S; E) = K_T^1(S; E) = K_T^2(S; E)$.

Proof. It is clear that $K_T^1(S;E) \subset K_T^2(S;E)$. To show $K_T^0(S;E) \subset K_T^1(S;E)$, let $x \in K_T^0(S;E)$ and let $\{T_\lambda\}$ be a net of B(X,Y) such that $\lim_{\lambda} \|T_\lambda\| = \|T\|$ and $\lim_{\lambda} \|T_\lambda(s) - T(s)\|_E = 0$ for all $s \in S$. As we can assume $T \neq 0$, it follows that $T_\lambda \neq 0$ for sufficiently large λ . Put $S_\lambda = (\|T\|/\|T_\lambda\|)T_\lambda$. Then we can easily see that $\lim_{\lambda} \|T_\lambda(h) - S_\lambda(h)\|_E = 0$ for any $h \in X$. Hence $\lim_{\lambda} \|S_\lambda(s) - T(s)\|_E = 0$ for all $s \in S$, so $\lim_{\lambda} \|S_\lambda(s) - T(s)\|_E = 0$, since $\sup_{\lambda} \|S_\lambda\| = \|T\|$ and $x \in K_T^0(S;E)$. Therefore we obtain that $\lim_{\lambda} \|T_\lambda(x) - T(x)\|_E = 0$ and hence $x \in K_T^1(S;E)$.

We next show that $K_T^2(S;E) \subset K_T^0(S;E)$. Note that the lemma holds whenever $\overline{sp}(S) = X$ or $Y = \{0\}$ or $E = \{0\}$, so we can assume that $\overline{sp}(S) \neq X$, $Y \neq \{0\}$ and $E \neq \{0\}$, where $\overline{sp}(S)$ is the closed linear span of S in X. Then we can find a functional $f \in X^*$ and an element $y \in Y$ such that $\|f\| = 1$, $\|y\| = 1$, $\|f| \overline{sp}(S) = 0$ and $\|y\|_E \neq 0$. Put $(y \otimes f)(a) = f(a)y$ for each $a \in X$. Then $y \otimes f$ is a norm one linear operator from X into Y. Now let $x \in K_T^2(S;E)$ and consider a net $\{T_\lambda\}$ of B(X,Y) such that $\sup_\lambda \|T_\lambda\| \leq \|T\|$ and $\lim_\lambda \|T_\lambda(s) - T(s)\|_E = 0$ for all $s \in S$. We need show that $\lim_\lambda \|T_\lambda(s) - T(s)\|_E = 0$. To do this let $\{T_\lambda\}$ be any subnet of $\{T_\lambda\}$. Then $\lim_\lambda \|T_{\lambda'}(s) - T(s)\|_E = 0$ for all $s \in S$. Fix λ' and for any real number $t \in \mathbb{R}$, put $\varphi(t) = \|T_{\lambda'} + ty \otimes f\|$. Then φ is continuous on \mathbb{R} and

$$\varphi(0) = \|T_{\lambda'}\| \le \|T\| \le 2 \|T\| - \|T_{\lambda'}\| \le \|\pm 2\|T\|y \otimes f + T_{\lambda'}\| = \varphi(\pm 2 \|T\|).$$

hence, by the intermediate value theorem, there exist $\alpha_{\lambda'} \in \mathbf{R}$ and $\beta_{\lambda'} \in \mathbf{R}$ such that

$$-2 \|T\| \le \beta_{\lambda'} \le 0 \le \alpha_{\lambda'} \le 2 \|T\| \quad \text{and} \quad \varphi(\beta_{\lambda'}) = \varphi(\alpha_{\lambda'}) = \|T\|.$$

Then there exist a convergent subnet $\{\alpha_{\lambda''}\}$ of $\{\alpha_{\lambda''}\}$ and a convergent subnet $\{\beta_{\lambda''}\}$ of $\{\beta_{\lambda''}\}$. For each λ'' , set

$$U_{\lambda''} = T_{\lambda''} + \alpha_{\lambda''} y \otimes f$$
 and $V_{\lambda''} = T_{\lambda''} + \beta_{\lambda''} y \otimes f$.

Then $||U_{\lambda''}|| = ||V_{\lambda''}|| = ||T||$ and $U_{\lambda''}(s) = V_{\lambda''}(s) = T_{\lambda''}(s)$ for all $s \in S$. Since $x \in K_T^2(S; E)$, it follows that $\lim_{\lambda''} ||U_{\lambda''}(x) - T(x)||_E = 0$ and
$$\begin{split} &\lim_{\lambda''}\|V_{\lambda''}(x)-T(x)\|_E=0. \quad \text{Hence} \quad \text{we have that} \quad \lim_{\lambda''}\|\alpha_{\lambda''}f(x)y-\beta_{\lambda''}f(x)y\|_E=0. \quad \text{Put} \quad \alpha=\lim_{\lambda''}\alpha_{\lambda''} \quad \text{and} \quad \beta=\lim_{\lambda''}\beta_{\lambda''}. \quad \text{Then} \quad \alpha\geqslant 0, \ \beta\leqslant 0 \quad \text{and} \quad \|(\alpha-\beta)f(x)y\|_E=0. \quad \text{If} \ f(x)=0, \ \text{then the equality:} \quad \lim_{\lambda''}\|U_{\lambda''}(x)-T(x)\|_E=0 \\ &\text{means that} \quad \lim_{\lambda''}\|T_{\lambda''}(x)-T(x)\|_E=0. \quad \text{If} \ f(x)\neq 0, \ \text{then} \quad \alpha=\beta, \ \text{so} \quad \alpha=\beta=0, \\ &\text{hence} \quad \text{the same} \quad \text{equality:} \quad \lim_{\lambda''}\|U_{\lambda''}(x)-T(x)\|_E=0 \quad \text{easily implies} \\ &\text{that} \quad \lim_{\lambda''}\|T_{\lambda''}(x)-T(x)\|_E=0. \quad \text{We thus obtain that for any subnet} \\ &\{T_{\lambda'}\} \quad \text{of} \quad \{T_{\lambda}\}, \quad \text{there exists a subnet} \quad \{T_{\lambda''}\} \quad \text{of} \quad \{T_{\lambda'}\} \quad \text{such that} \\ &\lim_{\lambda''}\|T_{\lambda''}(x)-T(x)\|_E=0. \quad \text{In other words,} \quad \lim_{\lambda}\|T_{\lambda}(x)-T(x)\|_E=0. \\ &\text{Q.E.D.} \end{aligned}$$

DEFINITION (cf. Altomare-Boccaccio [2] and Romanelli [7]). Let $K_T(S; E) = K_T^i(S; E)$ (i = 0, 1, 2) and we call $K_T(S; E)$ a (T, E)-Korovkin closure of S.

Remark 1. In case of that $X = Y = C(\Omega)$ (Ω is a compact Hausdorff space), T = the identity operator and $E = \{\delta_{\omega} : \omega \in \Omega\}$, F. Altomare and C. Boccaccio have already proved that $K_T^0(S; E) = K_T^1(S; E) = K_T^2(S; E)$ (see [2, Theorem 1.2 and Remark 1.3]).

For $S \subset X$, $T \in B(X, Y)$ and $g \in E$, let $\hat{S}_{T,g}$ be the set of all $x \in X$ such that if $f \in X^*$, $||f|| \le ||T||$ and f(s) = g(T(s)) for each $s \in S$, then f(x) = g(T(x)). Also set

$$\hat{S}_{T,E} = \bigcap_{g \in E} \hat{S}_{T,g}.$$

In this case, we have always that $\overline{sp}(S) \subset \hat{S}_{T,E}$.

Under these notations, we have the following result which contains [9, Lemma 2.1], applying the technique used by L. C. Kurtz [5], C. Micchelli [6], F. Altomare and C. Boccaccio [2], F. Altomare [1], etc.

THEOREM 1.1. If E is a weak*-closed subset of the unit ball of Y*, then $\hat{S}_{T,E} \subset K_T(S; E)$.

Proof. Let x_0 be an arbitrary element of $\hat{S}_{T,E}$ and suppose that $\{T_\lambda\colon\lambda\in\Lambda\}$ is a net of B(X,Y) such that $\sup_\lambda\|T_\lambda\|\leqslant\|T\|$ and $\lim_\lambda\|T_\lambda(s)-T(s)\|_E=0$ for each $s\in S$. Then we must show that $\lim_\lambda\|T_\lambda(x_0)-T(x_0)\|_E=0$. Assume the contrary. Then there is an $\varepsilon_0>0$ such that for any $\lambda\in\Lambda$, there exists $\alpha_\lambda\in\Lambda$ satisfying $\lambda\leqslant\alpha_\lambda$ and $\|T_{\alpha_\lambda}(x_0)-T(x_0)\|_E\geqslant\varepsilon_0$. Then we can find a functional $g_\lambda\in E$ such that

$$|g_{\lambda}(T_{\alpha\lambda}(x_0)) - g_{\lambda}(T(x_0))| \geqslant \frac{\varepsilon_0}{2}.$$
 (*)

We can assume without loss of generality that the net $\{g_{\lambda}: \lambda \in \Lambda\}$ converges to a functional $g_0 \in E$ in the weak*-topology. For each $\lambda \in \Lambda$, set $f_{\lambda}(x) = g_{\lambda}(T_{\alpha_{\lambda}}(x))(x \in X)$. Then each f_{λ} is a functional in X^* such that $||f_{\lambda}|| \leq ||T||$. Also we can assume that the net $\{f_{\lambda}: \lambda \in \Lambda\}$ converges to a functional $f \in X^*$ with $||f|| \leq ||T||$ in the weak*-topology. For any $s \in S$,

$$|f_{\lambda}(s) - g_{0}(T(s))| \leq |g_{\lambda}(T_{\alpha_{\lambda}}(s)) - g_{\lambda}(T(s))| + |g_{\lambda}(T(s)) - g_{0}(T(s))|$$

$$\leq ||T_{\alpha_{\lambda}}(s) - T(s)||_{E} + |g_{\lambda}(T(s)) - g_{0}(T(s))|.$$

Hence, after taking the limit with respect to λ , we obtain that $f(s) = g_0(T(s))$ for all $s \in S$. Therefore $f(x_0) = g_0(T(x_0))$ because $x_0 \in \hat{S}_{T,E} \subset \hat{S}_{T,g_0}$. However this contradicts the inequality (*). Q.E.D.

Remark 2. Let \overline{E} be the weak*-closure of $E \subset Y^*$. Then $K_T(S; \overline{E}) = K_T(S; E)$. However it seems that $\hat{S}_{T, \overline{E}} \neq \hat{S}_{T, E}$ in general because by the Hahn-Banach extension theorem, we have $\hat{S}_{T, \{0\}} = \overline{sp}(S)$ (if $T \neq 0$).

Applying the technique used by H. Bauer [3], C. Micchelli [6], F. Altomare and C. Boccaccio [2], F. Altomare [1] etc., we have the following result which characterizes (*T*, *E*)-Korovkin closures by means of the uniqueness sets in some special cases.

THEOREM 1.2. Let X be a normed space, $S \subset X$, A a function algebra of continuous functions on a locally compact Hausdorff space Ω which contains the space of all continuous functions on Ω having compact support, $E \subset \Omega \subset A^*$ and $T \in B(X, A)$. Then $K_T(S; E) \subset \hat{S}_{T, E}$. In particular, if E is compact, then $\hat{S}_{T, E} = K_T(S; E)$.

Proof. Let $x_0 \in K_T(S; E)$ and $\omega_0 \in E$. Suppose that f is a functional in X^* such that $||f|| \le ||T||$ and $f(s) = (Ts)(\omega_0)$ for each $s \in S$. Let $\{U_\lambda \colon \lambda \in \Lambda\}$ be the set of all relatively compact open neighbourhoods of ω_0 in Ω . If $\lambda, \lambda' \in \Lambda$, we define $\lambda \le \lambda'$ to mean that $U_{\lambda'} \subset U_{\lambda}$. Hence Λ is a direct set. For each $\lambda \in \Lambda$, choose an element $a_\lambda \in \Lambda$ such that $0 \le a_\lambda(\omega) \le 1$ for all $\omega \in \Omega$, $a_\lambda(\omega_0) = 1$ and $a_\lambda(\omega) = 0$ for all $\omega \in \Omega \setminus U_\lambda$, and set

$$T_{\lambda}(x) = f(x)a_{\lambda} + T(x)(1 - a_{\lambda})$$

for each $x \in X$. Then each T_{λ} is a bounded linear operator from X into A such that $||T_{\lambda}|| \le ||T||$. We claim that $\lim_{\lambda} ||T_{\lambda}(s) - T(s)||_{E} = 0$ for all $s \in S$. Indeed, let $s \in S$. Then for any $\varepsilon > 0$, there exists $\lambda_{\varepsilon} \in A$ such that $|(Ts)(\omega_{0}) - (Ts)(\omega)| < \varepsilon$ for all $\omega \in U_{\lambda_{\varepsilon}}$. Hence, we have

$$|(T_{\varepsilon}s)(\omega) - (Ts)(\omega)| = a_{\varepsilon}(\omega) |f(s) - (Ts)(\omega)| < \varepsilon$$

for all $\omega \in \Omega$ and all $\lambda \geqslant \lambda_v$. By taking the supremum over all $\omega \in \Omega$, we obtain that $\lim_{\lambda} \|T_{\lambda}(s) - T(s)\|_{E} = 0$. Therefore $\lim_{\lambda} \|T_{\lambda}(x_{0}) - T(x_{0})\|_{E} = 0$ because $x_{0} \in K_{T}(S; E)$. In particular, we have that $\lim_{\lambda} (T_{\lambda}x_{0})(\omega_{0}) = (Tx_{0})(\omega_{0})$, hence $f(x_{0}) = (Tx_{0})(\omega_{0})$ since $(T_{\lambda}x_{0})(\omega_{0}) = f(x_{0})$ for all $\lambda \in A$. In other words, $x_{0} \in \hat{S}_{T, \omega_{0}}$. Since ω_{0} is an arbitrary point in E, it follows that $x_{0} \in \hat{S}_{T, E}$. Consequently, $K_{T}(S; E) \subset \hat{S}_{T, E}$. If E is compact, then by Theorem 1.1, we obtain that $\hat{S}_{T, E} = K_{T}(S; E)$.

For $S \subset X$ and $F \subset X^*$, let $U_S(F)$ be the set of all $g \in F$ such that if $f \in F$ and f(s) = g(s) for all $s \in S$, then f = g. For $\rho > 0$, let $X_\rho^* = \{f \in X^*: \|f\| \le \rho\}$. It is clear that the following three conditions are equivalent:

- $(1) \quad \hat{S}_{T,E} = X.$
- (2) $\hat{S}_{T,g} = X$ for all $g \in E$.
- (3) $T^*(E) \subset U_S(X^*_{\|T\|})$ (under the condition: $E \subset Y^*_1$).

For $S \subset X$, let BKW $(X, Y; S, \| \|_E)$ be the set of all $T \in B(X, Y)$ such that if $\{T_{\lambda}\}$ is a net of B(X, Y) satisfying $\lim_{\lambda} \|T_{\lambda}\| = \|T\|$ and $\lim_{\lambda} \|T_{\lambda}(s) - T(s)\|_E = 0$ $(\forall s \in S)$, then $\lim_{\lambda} \|T_{\lambda}(x) - T(x)\|_E = 0$ $(\forall x \in X)$. Therefore T belongs to BKW $(X, Y; S, \| \|_E)$ if and only if $K_T(S; E) = X$.

DEFINITION. We call an operator in BKW(X, Y; S, $\| \cdot \|_E$) a BKW-operator from X into Y for the test set S and the semi-norm $\| \cdot \|_E$. We will omit the semi-norm $\| \cdot \|_E$ when $\| y \| = \| y \|_E$ for all $y \in Y$ (cf. [8].)

The following result follows immediately from Theorem 1.2 and the above argument.

THEOREM 1.3. Let X be a normed space, $S \subset X$, A a function algebra of continuous functions on a locally compact Hausdorff space Ω which contains the space of all continuous functions on Ω having compact support, E a compact subset of $\Omega(\subset A^*)$, $T \in B(X, A)$ and T^* the adjoint of T. Then T is a BKW-operator for S and $\|\cdot\|_E$ if and only if $T^*(E) \subset U_S(X^*_{\|T\|})$.

2. BKW-Operators from a Function Space on [0, 1] into $C(\Omega)$

Recall that an operator T from a function space into another function space is said to be unital if T(1) = 1. By applying Theorem 1.3, we can completely determine all BKW-operators from a function space on [0, 1] into $C(\Omega)$ for the test functions $\{1, x\}$ $\{x(t) = t \text{ for each } t \in [0, 1]\}$ as follows:

THEOREM 2.1. Let Ω be a compact Hausdorff space and X a function space on [0,1] such that $sp\{1,x\} \subseteq X$, where $sp\{1,x\}$ denotes the linear span of $\{1,x\}$. Then every BKW-operator T from X into $C(\Omega)$ for the test functions $\{1,x\}$ is of form

$$T(f) = f(0)u + f(1)v$$

for every $f \in X$, where u and v are functions in $C(\Omega)$ satisfying the following two conditions:

- (i) $|u(\omega)| + |v(\omega)| = ||T||$ for all $\omega \in \Omega$.
- (ii) If $u(\omega) \neq 0$ and $v(\omega) \neq 0$, then $|u(\omega) + v(\omega)| \neq ||T||$.

In this case, the functions u and v are given by u = T(1-x) and v = T(x). In particular, every norm one unital BKW-operator T from X into $C(\Omega)$ for $\{1, x\}$ is of form

$$T(f) = f(0)\chi + f(1)(1 - \chi)$$

for every $f \in X$, where χ is a characteristic function on some clopen subset of Ω .

Moreover, we can completely determine all norm one unital BKW-operators T from a function space on [0,1] into $C(\Omega)$ for the test functions $\{1, x, x^2\}$ as follows:

THEOREM 2.2. Let Ω be a compact Hausdorff space and X a function space on [0,1] such that $\{1,x,x^2,x^3\}\subset X$. Then every norm one unital BKW-operator T from X into $C(\Omega)$ for the test functions $\{1,x,x^2\}$ is of form

$$(Tf)(\omega) = \begin{cases} f(\varphi(\omega)), & \text{if } \omega \in \Omega \backslash G \\ f(0)\{1 - \varphi(\omega)\} + f(1) \varphi(\omega), & \text{if } \omega \in G \end{cases}$$

for every $f \in X$, where φ is a continuous map from Ω into [0,1] and G is an open subset of Ω such that $0 < \varphi(\omega) < 1(\forall \omega \in G)$ and $\varphi(\omega) = 0$ or $1(\forall \omega \in \partial G)$. Here ∂G denotes the topological boundary of G in Ω . In this case, the function φ is given by $\varphi = T(x)$.

Remark 3. Let Φ and Ω be compact Hausdorff spaces and let X be a function space on Φ . If any bounded linear operator from X into $C(\Omega)$ has a norm preserving linear extension to the whole space $C(\Phi)$, then the restriction map: $T \to T \mid X$ maps $BKW(C(\Phi), C(\Omega); S)$ into $BKW(X, C(\Omega); S)$, where S denotes a set of test functions. Theorem 2.1 asserts that this restriction map is well-defined and onto in case of $\Phi = [0, 1]$ and $S = \{1, x\}$. If we consider only the norm one unital

operators, then Theorem 2.2 asserts that the restriction map is well-defined and onto in case of $\Phi = [0, 1]$ and $S = \{1, x, x^2\}$.

In order to prove the above theorems, we have to prepare some lemmas.

LEMMA 2.1. Let X be a normed space and S a subset of X such that $\overline{sp}(S) \subseteq X$. Then all functionals in $U_S(X_1^*)$ are of norm one.

Proof. Let $f \in U_S(X_1^*)$. Assume that ||f|| < 1. By the Hahn-Banach separation theorem, we can find a nonzero functional $g \in X^*$ such that g(s) = 0 for all $s \in S$. Set $h = f + \lambda g$, where $\lambda = (1 - ||f||)/||g||$. Then h(s) = f(s) for all $s \in S$ and $||h|| \le 1$, hence h = f, a contradiction. Q.E.D.

The following result is well-known (cf. [4, Note 12.29]).

LEMMA 2.2. Let (Ω, μ) be a measure space and $L^1(\Omega, \mu)$ the space of all complex-valued integrable functions on Ω . If $f_1, ..., f_n \in L^1(\Omega, \mu)$ are such that

$$\left| \int_{\Omega} f_1(\omega) \, d\mu(\omega) \right| + \dots + \left| \int_{\Omega} f_n(\omega) \, d\mu(\omega) \right|$$

$$= \int_{\Omega} |f_1(\omega)| \, d\mu(\omega) + \dots + \int_{\Omega} |f_n(\omega)| \, d\mu(\omega),$$

then $f_1(\omega) = e^{i\theta_1} |f_1(\omega)|, ..., f_n(\omega) = e^{i\theta_n} |f_n(\omega)| \quad \mu - a.e.$ on Ω , where $\theta_j = \text{Arg}[\int_{\Omega} f_j(\omega) d\mu(\omega)] \quad (j = 1, ..., n).$

The following result completely determines the uniqueness set $U_{\{1,x\}}(X_1^*)$.

LEMMA 2.3. Let X be a function space on [0, 1] such that $sp\{1, x\} \subseteq X$. Then $U_{\{1, x\}}(X_1^*) = \{a \delta_0 \mid X + b \delta_1 \mid X; a, b \in \mathbb{C}, |a| + |b| = 1 \text{ and } |a + b| \neq 1 \text{ (if } a \neq 0, b \neq 0)\}.$

Proof. Let $\mu \in U_{\{1,x\}}(X_1^*)$. Put $a = \mu(1-x)$ and $b = \mu(x)$. Then $|a| \le 1$ and $|b| \le 1$. For any $\alpha, \beta \in \mathbb{C}$, we have

$$\begin{aligned} |\alpha a + \beta b| &= |\mu\{\alpha(1-x) + \beta x\}| \\ &\leq \|\mu\| \|\alpha(1-x) + \beta x\| \\ &\leq \max_{0 \leq t \leq 1} |\alpha(1-t) + \beta t|. \end{aligned}$$

In particular, for $\alpha = \bar{a}/|a|$ and $\beta = \bar{b}/|b|$, we have $|a| + |b| \le \max_{0 \le t \le 1} \{ |\alpha| (1-t) + |\beta| t \} = 1$. Now set $v = a \delta_0 |X + b \delta_1| X$ and so

 $\|v\| \le |a| + |b| \le 1$. Also $v(1) = a + b = \mu(1)$ and $v(x) = b = \mu(x)$. Then $\mu = v$, i.e., $\mu = a \, \delta_0 | X + b \, \delta_1 | X$ because $\mu \in U_{\{1,x\}}(X_1^*)$. Moreover by Lemma 2.1, $\|\mu\| = 1$, so that $1 \le |a| + |b|$ and hence we have |a| + |b| = 1. If also $a \ne 0$ and $b \ne 0$, then $|a + b| \ne 1$. In fact, if |a + b| = 1, then we can find t > 0 such that b = ta. Also choose a function $g \in X \setminus sp\{1, x\}$ and put $f = g - g(0)1 + \{g(0) - g(1)\}x$. Then $f \in X$ and $f \ne 0$, hence there exists 0 < s < 1 such that $f(s) \ne 0$. Note that (s - t + st)/s < 1, so take a positive number ρ such that $\max\{0, (s - t + st)/s\} < \rho < 1$. Set

$$\alpha = \rho a, \ \beta = \frac{(1-\rho)a}{1-s}, \ \gamma = \frac{(1-s)b-s(1-\rho)a}{1-s}$$

and

$$\mu_1 = \alpha \delta_0 | X + \beta \delta_s | X + \gamma \delta_1 | X$$

Then we can easily see that $\mu_1(1) = \mu(1)$ and $\mu_1(x) = \mu(x)$. Also since $(s - t + st)/s < \rho$,

$$|\alpha| + |\beta| + |\gamma| = \rho |a| + \frac{(1-\rho)|a|}{1-s} + \frac{|(1-s)|t-s(1-\rho)||a|}{1-s}$$

$$= |a| \left\{ \rho + \frac{1-\rho}{1-s} + \frac{(1-s)|t-s(1-\rho)|}{1-s} \right\}$$

$$= |a| (1+t) = |a| + |b| = 1,$$

hence $\|\mu_1\| \le 1$. Then $\mu_1 = \mu$ because $\mu \in U_{\{1,x\}}(X_1^*)$. However $\mu_1(f) = \beta f(s) \ne 0$ and $\mu(f) = af(0) + bf(1) = 0$, so $\mu_1 \ne \mu$. This is a contradiction. Conversely, let $a, b \in \mathbb{C}$ be such that |a| + |b| = 1 and $|a + b| \ne 1$ if $a \ne 0$, $b \ne 0$. We must show that $a \delta_0 |X + b \delta_1| |X \in U_{\{1,x\}}(X_1^*)$. To do this, let $\mu \in X_1^*$ be such that $\mu(1) = a + b$ and $\mu(x) = b$. By the Hahn-Banach extension theorem, we can find a Radon measure $\tilde{\mu}$ on [0, 1] such that $\tilde{\mu} |X = \mu$ and $\|\tilde{\mu}\| = \|\mu\|$. Let $\tilde{\mu} = \mu |\tilde{\mu}|$ be the polar decomposition of $\tilde{\mu}$, i.e.,

$$\int_{0}^{1} f(t) \, d\tilde{\mu}(t) = \int_{0}^{1} f(t) \, u(t) \, d \, |\tilde{\mu}| \, (t)$$

for all $f \in L^1([0, 1], |\tilde{\mu}|)$, where $|\tilde{\mu}|$ is the total variation of $\tilde{\mu}$ and u is a measurable function on [0, 1] with |u(t)| = 1 for all $t \in [0, 1]$ (see [4, Corollary 19.38]). Then we have the following inequality:

$$\begin{aligned} 1 &= |a| + |b| = |\mu(1 - x)| + |\mu(x)| \\ &= \left| \int_0^1 (1 - t) \, u(t) d \, |\tilde{\mu}| \, (t) \right| + \left| \int_0^1 t u(t) d \, |\tilde{\mu}| \, (t) \right| \\ &\leq \int_0^1 (1 - t) d \, |\tilde{\mu}| \, (t) + \int_0^1 t d \, |\tilde{\mu}| \, (t) \\ &\leq \int_0^1 d \, |\tilde{\mu}| = ||\tilde{\mu}|| = ||\mu|| \leq 1. \end{aligned}$$

If $a \neq 0$ and $b \neq 0$, then by Lemma 2.2, we have $(1-t)u(t) = e^{i\alpha}(1-t)(|\tilde{\mu}| - \text{a.e.})$ and $tu(t) = e^{i\beta}t(|\tilde{\mu}| - \text{a.e.})$, where $\alpha = \text{Arg}(a)$ and $\beta = \text{Arg}(b)$. Hence we have

$$1 = |(1 - t) e^{i\alpha} + te^{i\beta}| (|\tilde{\mu}| - a.e.).$$

Since $|a+b| \neq 1$ and hence $\alpha \neq \beta$ (mod. 2π), it follows that $|\tilde{\mu}|([0,1]\setminus\{0,1\})=0$, i.e., $\sup(|\tilde{\mu}|)\subset\{0,1\}$ by the above equation. If a=0, then the above inequality implies that $\int_0^1 (1-t)\,d\,|\tilde{\mu}|\,(t)=0$ and hence $\sup(|\tilde{\mu}|)=\{1\}$. If b=0, the same inequality implies that $\int_0^1 td\,|\tilde{\mu}|\,(t)=0$ and hence $\sup(|\tilde{\mu}|)=\{0\}$. Then $|\tilde{\mu}|$ can be expressed as $|\tilde{\mu}|=c\,\delta_0+d\,\delta_1$, for some complex numbers c and d. Therefore $\tilde{\mu}=cu(0)\,\delta_0+du(1)\delta_1$, hence we can easily see that $\mu=a\,\delta_0\,|\,X+b\,\delta_1\,|\,X$. We thus obtain that $a\,\delta_0\,|\,X+b\,\delta_1\,|\,X\in U_{\{1,x\}}(X_1^*)$. Q.E.D.

The following result completely determines the "positive" functionals in the uniqueness set $U_{\{1,x,x^2\}}(X_1^*)$. The same result has been obtained by C. Micchelli for X = C([0,1]) (see [6, Theorem 3.1]).

Lemma 2.4. Let X be a function space on [0,1] such that $\{1,x,x^2,x^3\}\subset X$ and $X_+^*=\{\mu\in X^*\colon \|\mu\|=\mu(1)\}$. Then $U_{\{1,x,x^2\}}(X_1^*)\cap X_+^*=\{\delta_\lambda\mid X:0\leqslant\lambda\leqslant 1\}\cup (1-a)\ \delta_0\mid X+a\ \delta_1\mid X:0\leqslant a\leqslant 1\}$.

Proof. Let $0 \le a \le 1$. Then $\delta_a \mid X$ and $(1-a) \delta_0 \mid X+a \delta_1 \mid X$ are in X_+^* . To show that $\delta_a \mid X \in U_{\{1, x, x^2\}}(X_1^*)$, let $v \in X_1^*$ be such that $v(x^k) = \delta_a(x^k)(k=0,1,2)$. Then $1 = v(1) \le \|v\| \le 1$. Choose a Radom measure \tilde{v} on [0,1] such that $\tilde{v} \mid X=v$ and $\|\tilde{v}\| = \|v\|$. Then $\|\tilde{v}\| = \tilde{v}(1) = 1$, so \tilde{v} is positive and also we have

$$\tilde{v}((x-a)^2) = v(x^2) - 2av(x) + a^2v(1) = a^2 - 2a^2 + a^2 = 0.$$

Hence, the support of \tilde{v} is the single point $\{a\}$. This immediately implies that $\tilde{v} = \delta_a$, so $v = \delta_a \mid X$ and hence $\delta_a \mid X \in U_{\{1,x,x^2\}}(X_1^*)$. Next, to show that $(1-a) \delta_0 \mid X + a \delta_1 \mid X \in U_{\{1,x,x^2\}}(X_1^*)$, let $v \in X_1^*$ be such that $v(x^k) = ((1-a) \delta_0 + a \delta_1)(x^k)(k=0,1,2)$. Then $1 = v(1) \leq ||v|| \leq 1$.

Choose a Radom measure \tilde{v} on [0, 1] such that $\tilde{v} \mid X = v$ and $||\tilde{v}|| = ||v||$. Then \tilde{v} is positive and $\tilde{v}(x - x^2) = v(x - x^2) = a - a = 0$. Hence, the support of \tilde{v} is contained in $\{0, 1\}$. This immediately implies that $v = (1 - a) \delta_0 \mid X + a \delta_1 \mid X$ and hence $(1 - a) \delta_0 \mid X + a \delta_1 \mid X \in U_{\{1, x, x^2\}}(X_1^*)$.

Conversely, let $\mu \in U_{\{1, x, x^2\}}(X_1^*) \cap X_+^*$. By Lemma 2.1, $\|\mu\| = 1$, and so $\mu(1) = 1$. Choose a positive Radon measure $\tilde{\mu}$ on [0, 1] such that $\tilde{\mu} \mid X = \mu$ and $\|\tilde{\mu}\| = \|\mu\|$. Put $\alpha = \mu(x)$ and $\beta = \mu(x^2)$. Then we have that $0 \le \alpha$, $\beta \le 1$, $\beta \le \alpha$ and $\alpha^2 \le \beta$ by Schwarz's inequality. If $\alpha = \beta$, then $\tilde{\mu}(x - x^2) = 0$ and hence we have $\mu = (1 - \alpha) \delta_0 \mid X + \alpha \delta_1 \mid X$ by the above argument. If also $\alpha^2 = \beta$, then $\tilde{\mu}((x - \alpha)^2) = \beta - 2\alpha^2 + \alpha^2 = 0$ and so $\mu = \delta_\alpha \mid X$ by the above argument. We finally show that the case $0 < \alpha^2 < \beta < \alpha < 1$ does not occur. Assume the contrary. For each $0 < \lambda < 1$, set

$$\mu_{\lambda} = a(\lambda) \delta_0 \mid X + b(\lambda) \delta_{\lambda} \mid X + c(\lambda) \delta_1 \mid X$$

where $a(\lambda) = \lambda^{-1} \{\lambda - (1 + \lambda) \alpha + \beta\}$, $b(\lambda) = (\lambda(1 - \lambda))^{-1}(\alpha - \beta)$ and $c(\lambda) = (1 - \lambda)^{-1}(\beta - \lambda \alpha)$. Then we have that $\mu_{\lambda}(1) = 1 = \mu(1)$, $\mu_{\lambda}(x) = \alpha = \mu(x)$ and $\mu_{\lambda}(x^2) = \beta = \mu(x^2)$. Note that $a(\alpha) > 0$, $b(\alpha) > 0$ and $c(\alpha) > 0$. Then $\|\mu_{\alpha}\| = 1$ and hence μ_{α} must equal μ . Now choose a number ε such that $0 < \varepsilon < \min\{1 - \alpha, (\beta - \alpha^2)/\alpha\}$. Then $a(\alpha + \varepsilon) > 0$, $b(\alpha + \varepsilon) > 0$ and $c(\alpha + \varepsilon) > 0$. Hence $\|\mu_{\alpha+\varepsilon}\| = 1$, so $\mu_{\alpha+\varepsilon}$ must equal μ . On the other hand, we can find a polynomial $p \in X$ of the third degree such that $p(0) = p(1) = p(\alpha) = 0$ and $p(\alpha + \varepsilon) \neq 0$. Then we have $\mu_{\alpha+\varepsilon}(p) = b(\alpha + \varepsilon) p(\alpha + \varepsilon) \neq 0$ and $\mu_{\alpha}(p) = b(\alpha) p(\alpha) = 0$. This is a contradiction. Q.E.D.

Remark 4. In Lemma 2.4 and Theorem 2.2, we can replace the condition: $\{1, x, x^2, x^3\} \subset X$ by the condition: X contains a Chebyshev system $\{1, x, x^2, g\}$ of order 3.

The following result is fundamental and its proof is straightforward, and so is left to the reader.

LEMMA 2.5. Let Ω be a topological space, G an open subset of Ω . Let φ and ψ be continuous maps from Ω to another topological space such that $\varphi(\omega) = \psi(\omega)$ for each $\omega \in \partial G$ and let f be defined on Ω by

$$f(\omega) = \begin{cases} \psi(\omega) & \text{if } \omega \in \Omega \backslash G \\ \varphi(\omega), & \text{if } \omega \in G. \end{cases}$$

Then f is continuous on Ω . Here ∂G denotes the topological boundary of G.

Proof of Theorem 2.1. Let T be a bounded linear operator from X into $C(\Omega)$. Without loss of generality, we can assume that T is of norm one. By Theorem 1.3, T is a BKW-operator from X into $C(\Omega)$ for the test functions $\{1, x\}$ if and only if $T^*(\delta_{\omega}) \in U_{\{1, x\}}(X_1^*)$ for all $\omega \in \Omega$, where δ_{ω} denotes

the evaluation at $\omega \in \Omega$. Also by Lemma 2.3, $T^*(\delta_\omega) \in U_{\{1,x\}}(X_1^*)$ for all $\omega \in \Omega$ if and only if for each $\omega \in \Omega$, there exists a pair of complex numbers $(u(\omega),v(\omega))$ such that $T^*(\delta_\omega)=u(\omega)\,\delta_0\mid X+v(\omega)\,\delta_1\mid X,$ $|u(\omega)|+|v(\omega)|=1$ and $|u(\omega)+v(\omega)|\neq 1$ when $u(\omega)\neq 0$ and $v(\omega)\neq 0$. Note that $T^*(\delta_\omega)=u(\omega)\,\delta_0\mid X+v(\omega)\,\delta_1\mid X$ means that $(Tf)(\omega)=f(0)u(\omega)+f(1)v(\omega)$ for all $f\in X$. We thus obtain that T(f)=f(0)u+f(1)v for all $f\in X$. Moreover, this equation easily implies that u=T(1-x) and v=T(x) and so u and v are in $C(\Omega)$.

In particular, if T is unital, we have

$$1 = (T1)(\omega) = u(\omega) + v(\omega)$$

for all $\omega \in \Omega$. Therefore $\Omega = \Omega_u \cup \Omega_v$ and $\Omega_u \cap \Omega_v = \emptyset$, where $\Omega_u = \{\omega \in \Phi: u(\omega) \neq 0\}$ and $\Omega_v = \{\omega \in \Phi: v(\omega) \neq 0\}$. Hence u and v equal the characteristic functions on Ω_u and Ω_v , respectively. Of course, u + v = 1, so that by putting $\chi = u$, we obtain that the desired equation:

$$T(f) = f(0)\chi + f(1)(1 - \chi)$$

for every $f \in X$. Q.E.D.

Proof of Theorem 2.2. Let T be a norm one unital BKW-operator from X into $C(\Omega)$ for the test functions $\{1,x,x^2\}$. Let $\omega \in \Omega$. Then by Theorem 1.3, $T^*(\delta_\omega) \in U_{\{1,x,x^2\}}(X_1^*)$ and so $\|T^*(\delta_\omega)\| = 1$ by Lemma 2.1. Note also that $(T^*\delta_\omega)(1) = 1(\omega) = 1$. Therefore $T^*(\delta_\omega) \in U_{\{1,x,x^2\}}(X_1^*) \cap X_+^*$ for all $\omega \in \Omega$. Hence by Lemma 2.4, we have $\Omega = F_T \cup G_T$, where F_T is the set of all $\omega \in \Omega$ such that $T^*(\delta_\omega) \in \{\delta_{\lambda} \mid X: 0 \leq \lambda \leq 1\}$ and G_T is the set of all $\omega \in \Omega$ such that $T^*(\delta_\omega) \in \{(1-a)\delta_0 \mid X+a\delta_1 \mid X: 0 < a < 1\}$. Since the map: $\omega \to T^*(\delta_\omega)$ is weak*-continuous and the set $\{\delta_{\lambda} \mid X: 0 \leq \lambda \leq 1\}$ is weak*-closed, F_T must be closed. Of course, $F_T \cap G_T = \emptyset$, hence G_T is open. For each $\omega \in F_T$, we can find a unique point $t(\omega)$ in [0,1] such that $T^*(\delta_\omega) = \delta_{t(\omega)} \mid X$. Also for each $\omega \in G_T$, we can find a unique point $s(\omega)$ in the open unit interval $s(\omega)$ for each $s(\omega)$. Then for each $s(\omega)$ for each $s(\omega)$. Then for each $s(\omega)$ for each $s(\omega)$ for each $s(\omega)$ for each $s(\omega)$ for each $s(\omega)$.

$$(Tf)(\omega) = \begin{cases} f((Tx)(\omega)), & \text{if } \omega \in F_T \\ f(0)\{1 - (Tx)(\omega)\} + f(1)(Tx)(\omega), & \text{if } \omega \in G_T. \end{cases}$$

Let $\omega \in \partial G_T$. Then there exists a net $\{\omega_\lambda\}$ in G_T which converges to ω . Set $t = (Tx)(\omega)$ and $t_\lambda = (Tx)(\omega_\lambda)$. Then $T^*(\delta_\omega) = \delta_t \mid X$, $T^*(\delta_{\omega_\lambda}) = (1-t_\lambda)\delta_0 \mid X+t_\lambda\delta_1 \mid X$ and the net $\{t_\lambda\}$ converges to t. Since $w^* - \lim_\lambda T^*(\delta_{\omega_\lambda}) = T^*(\delta_\omega)$, it follows that $\delta_t \mid X = (1-t)\delta_0 \mid X+t\delta_1 \mid X$, hence, $\delta_t(x^2) = (1-t)\delta_0(x^2) + t\delta_1(x^2)$, so t = 0 or 1. Conversely, let φ be a continuous map from Ω into [0,1] and G is an open subset of Ω such that $0 < \varphi(\omega) < 1(\forall \omega \in G)$ and $\varphi(\omega) = 0$ or $1(\forall \omega \in \partial G)$. For each $f \in X$, put

$$(T_{\varphi}f)(\omega) = \begin{cases} f(\varphi(\omega)), & \text{if } \omega \in \Omega \backslash G \\ f(0)\{1 - \varphi(\omega)\} + f(1) \varphi(\omega), & \text{if } \omega \in G. \end{cases}$$

Since $\varphi(\omega) = 0$ or $1(\forall \omega \in \partial G)$, it follows that $f(0)\{1 - \varphi(\omega)\} + f(1) \varphi(\omega) = f(\varphi(\omega))$ for all $\omega \in \partial G$. Then for each $f \in X$, $T_{\varphi}(f)$ is a complex-valued continuous function on Ω by Lemma 2.5. Moreover we can easily see that T_{φ} is a norm one unital linear operator from X into $C(\Omega)$. Also by the definition of T_{φ} , we have that

$$T_{\omega}^{*}(\delta_{\omega}) \in \{\delta_{\lambda} \mid X: 0 \leq \lambda \leq 1\} \bigcup \{(1-a)\delta_{0} \mid X+a\delta_{1} \mid X: 0 < a < 1\}$$

for all $\omega \in \Omega$. Then T_{φ} is BKW for the test functions $\{1, x, x^2\}$ from Theorem 1.3 and Lemma 2.4. Q.E.D.

ACKNOWLEDGMENTS

The author thanks one of the referees for a helpful suggestion on Theorem 1.2, and the other referees for valuable comments. The author also expresses his appreciation to Dr. Keiji Minagawa for useful advice.

REFERENCES

- F. ALTOMARE, Approximation of finitely defined operators in function spaces, Note Mat. 7 (1987), 211-229.
- F. ALTOMARE AND C. BOCCACCIO, On Korovkin-type theorems in spaces of continuous complex-valued functions, Boll. Un. Mat. Ital. B (6) 1, No. 1 (1982), 75–86.
- 3. H. Bauer, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier (Grenoble) 23 (1973), 245-260.
- E. HEWITT AND K. STROMBERG, "Real and Abstract Analysis," Springer-Verlag, Berlin/ Heidelberg/New York, 1969.
- L. C. Kurtz, Unique Hahn-Banach extension and Korovkin's theorem, Proc. Amer. Math. Soc. 47 (1975), 413-416.
- C. A. MICCHELLI, Convergence of positive linear operators on C(X), J. Approx. Theory 13 (1975), 305-315.
- 7. S. ROMANELLI, Universal Korovkin closures with respect to operators on commutative Banach algebras, *Math. Japon.* 37, No. 3 (1992), 427–443.
- 8. S.-E. Takahasi, Bohman-Korovkin-Wulbert operators on normed spaces, *J. Approx. Theory* 72 (1993), 174-184.
- S.-E. TAKAHASI, BKW-operators on function spaces, Rend. Circ. Mat. Palermo (2) Suppl. 33 (1993), 479-488.